

Development of Composite Complex Geometries Structures – An Automated Fiber Placement Application

Alex C. Bottene Wellington L. N. de Mello Rynaldo Z. H. Almeida Priscila Prado Gomes

Lightweight Structures Laboratory Laboratório de Estruturas Leves (LEL)

Composites

- The material for affordable structures:
 - High strength/weight ratio;
 - Lay-up directions based on part requirements;
 - Less material waste;
 - Complex part production.
- Applications:
 - Aerospace and aeronautic ...
 - Automotive;
 - Energy;
 - Infrastructure;

- Oil and gas;
- Medical;
- others.

Automated Laminating Processes

- NC machines for automated lay-up composites parts;
- Substitute to hand lay-up process:

- Perform automated lay-up of composites tows onto a mould;
 - Individual tow control;
 - Complex parts
 - Compression;
 - Narrow tows;
 - Fiber steering;
 - Alignments;
 - Auto cut and position;
 - Near net-shape;

Source: Evans, D. O. (2001), Fiber Placement

 Perform automated lay-up of composites tows onto a mould;

Source: Evans, D. O. (2001), Fiber Placement

• Machine examples:

- 1. Robot platform: Coriolis;
- 2. Gantry: Electroimpact;
- 3. Rotational mandrel: MAG Cincinnati;

Source: Marsh, G. (2011), Automating aerospace composites production with fibre placement

The Automated Fiber Placement Process Manufacturing Coverage Algorithms **Parameters**

Source: MAG IAS, LLC (2011), Advanced Composite Environment V2.0 – Help Documentation

Main operational parameters:

- Feedrate;
- Tow temperature;
- Tow tension;
- Compaction pressure;
- and others.

Main induced defects:

- Gaps;
- Overlaps;
- Tows twist;
- Tows drop;
- and others.

Source: Bottene, et.al. (2012), Experimental Evaluation of Automated Fiber Placement Manufacturing Parameters

Evaluate coverage methodologies and manufacturing parameters...

Coverage Algorithms

Source: Mello et.al. (2012), Assessment of Automated Fiber Placement Coverage Generation Algorithms

Manufacturing Parameters

Source: Bottene et.al. (2012), Experimental Evaluation of Automated Fiber Placement Manufacturing Parameters

... for the production of a complex shape composite structure

ıpť

Methodology

- Three main testing groups:

- 1. Standard laminate;
- 2. Theory versus real ratio analysis;
- 3. Enhanced parameters evaluation.

Methodology

• Group 1:

- Lamination: single ply, 0° , 45° , 90° and -45° .
- Manufacturing parameters:

Parameter	Value	Unit
Feedrate	1270	mm/min
Tow temperature	90	°C
Tow Tension	2,22	N
Compaction pressure	1447,9	kPa

– Maximum:

• Gap: 1,5mm; Overlap: 1,58mm;

FAD: 2°

Methodology

• Group 2:

- Objective: evaluate and stabilize the theory versus real ratio;
- Lamination: single ply, 0° ;
- Three laminations;
- Coverage parameters based on Group 1 results.
- Group 3:
 - Objective: production of a laminate with enhanced final quality;
 - Lamination: single ply, 0° .

Materials

- Carbon fiber tow:
 - Hexcel Hexply M21/IM7;

- Carbon fiber with pre-impregnated epoxy resin.
- MAG Cincinnati VIPER 1200 fiber placement;
 - Up to 12 tows (1/8in width);
 - Usable area: 3,0m diameter and 4,0m length.
- Mandrel:
 - Double curvature complex part;
 - Representative rear fuselage section.
- Manual magnifier: Peak 10x 0,1mm resolution;

• Group 1

- Group 1:
 - Gaps:
 - Theory to real values had decreased;
 - Overlaps:
 - Theory to real values had encreased;
 - Fiber Angle Deviation (FAD):
 - Values were not compared difficult to measure.
 - Ratio:
 - Impossible to define.

• Group 2:

- Group 2:
 - Gaps:
 - Ratio: from 10% to 54%;
 - Overlaps:
 - Ratio: from 96% to 153%;
 - Measures standard deviation:
 - 0,17mm (under machine and material specification).
 - Standard ratio:
 - 10%.

• Group 3

- Requirements achieved - maximum Gap: 1,5mm

Conclusion

- Experimentally tested ratio: 10%;
 - Possible to produce parts over 10% simulation limits;
 - Enlarge AFP applications.
- Complex shape composite structures:
 - Fiber Placement can be applied.
- Future work:
 - Evaluation of the manufacturing parameter direct associated with the ratio;
 - Test different geometries for ratio evaluation.

Thank you

www.ipt.br/EN

